Updated 8386 Ferrari F1 Racer


On December 18th, 2004 I bought 8386 here in Cologne, Germany. It was the first LEGO set I bought in 7 years, and thus was the end of my Dark Ages. It was my return to LEGO. Today marks ten years since I bought this set. This is a celebration of that event 10 years ago.

The full gallery may be found here.

Updated 8386 F2004

A lot has happened in the last ten years. When I think about that time I pause to reflect on where I have come. I have lived in 10 different places, including three states, had a number of different jobs, and increased my family unit by a factor of three. But people don’t come to this website to read about me, they come for LEGO. Over the last ten years we have gained much. The Technic line has improved both in terms of functional abilities, but also in the frequency and quantity of models offered. We have gained Power Functions. We have Linear Actuators, CV joints, more suspension parts, and so many more wheel options. We have favorite elements that did not exist ten years ago. Colors now include green, blue, white, and orange. LEGO made a Unimog. Bricklink started not much more than 10 years ago. Let that sink in for a moment. All of these developments have made so much of my building possible. It only makes sense to celebrate with a MOD of the set that reminds me of my return.

8386 was a rather basic set. It was modeled after the F2004 car #1 or #2 of the 2004 Scuderia Ferrari team through a licensing agreement with Ferrari. The cars were rather successful during the 2004 season at the hands Michael Schumacher and Rubens Barrichello. 8386 included working steering, a working V-10, and a removable engine cover. And that’s about it. Oh, and a lot of stickers. As I did with the 8081 4×4 my goal was to keep what was there, and improve what I could. I would add some additional features, namely suspension and a gearbox. Since 2004, LEGO has added a number of elements that made these goals easier than they would have been ten years ago.
First, I built 8386 as is. After a good hour, I had the stock 8386 complete. I had my constraints, so now I needed to modify the set. I started with the front suspension, as I thought that would be rather difficult. Turns out it wasn’t. I removed a couple of axles, and added in two hard shock absorbers. The geometry made the suspension adequate. It could have been a little harder, and could have been a little more aesthetically pleasing, but it worked.
8386 Front Suspension
On to the rear. First to go was the trans-clear engine. Ugh. I knew I wanted to add rear suspension, but I was not sure I wanted to add a gearbox due to the limited space. I played around with some designs, and decided I should give it a go. I came up with a design that would need only 7 studs of space. The design would be off center of the car, which would present some changeover problems, but saved 3 studs of length. One axle would connect directly to the new style differential, and the other axle would connect directly to the crankshaft of the V-10. At first, I set the gearbox behind the differential, but I found that option to be rather unsightly and added some complications to the gearshift linkages. With some modifications to the chassis, moving the V-10 forward a stud, and increasing wheelbase by moving the rear axle back 1/2 stud the gearbox would fit.
8386 Gearbox
Once the gearbox was designed, I worked on the rear suspension. The gearbox got in way of the suspension design I wanted, but that was a cost I was willing to pay. I used the same upper arms as 8386, but created a liftarm design for the lower arm. Two shock absorbers connected from the chassis to the slightly modified wheel hub. While a pushrod design would have been nice, this setup worked well enough for me. I added a simple linkage to the gearbox that connected to levers in the cockpit. It looks a little clunky, but it allow all the controls to be at hand. I then made some modifications to the exhaust system so it would fit the added features. I made some modifications to the body work to give the car some visual lines that matched F2004, and added a little more white. The car was done.
End of the V-10, beginning of the cramped transaxle.

End of the V-10, beginning of the cramped transaxle.

All in all the design worked well, and required less time than some of my more fancy builds. It was a restful project, and one to which I enjoyed returning.
Maybe in another ten years, I’ll update this again with new features made possible with 10 years of LEGO changes and developments. I look forward to it.
Happy Building.

Octan F1


In a bought of inspiration (or distraction) at work, I noted my old 6546 sitting on my desk. After years of looking at this small car I thought, I could make this bigger, and in Technic. Done.

The full gallery including instructions can be found here.

Octan F1 Front

I decided the car should have a simple engine, four wheel suspension, and working steering. Recently, there was a good design that gave me an idea about how to do a smaller scale driveline for the car. I worked on the rear first, and once I had the suspension setup, I added a small flat four engine place directly on the bottom of the car. This would be the basis for the rear of the chassis.

I then started the front suspension design which would utilize the new suspension components from 42021. I first tried adding shock absorbers. Then I added rubber connectors. The first was too big, the second did not work to well. After monkeying with it for a while, I developed a simple torsion bar setup. The torsion axle is a 10l and provides the pivot point to the bottom control arms. They connect to the chassis behind the suspension to a fixed point under the steering wheel. The set up works well. Frankly, it works a little better than the rear as the rear could benefit from stiffer arms and suspension mounts.

Next came the body work. As I wanted to keep things similar to the 6546, the coloring would have to be white, green, and red. And it would need some stickers. I used the stickers from set 60025, so the car number would have to be changed from the original #4 to #5. The coloring and markings turned out well. I tried to make sure it was not too busy. Easy enough, and everything is easily acquired so you may build your own.

Fitting with my yearly planning I have now completed the two small builds I wanted to complete. It was quick, fun, and a MOC that is accessible for other builders. Feel free to build your own (make some new colors, and we can then have a race).

Happy Building.

Talon Track


Every once and a while I see something so creative I have to build something like it.  I happened with my HH-65.  It happened with my Zil 132.  And to some extent it happened with my Spitfire.  But when I saw the Urban Buggy from Chrismo, I though I have to make something like it.  It was such a fresh and creative design.  It had such great lines, a perfect stance, and a unique driveline setup.  But while imitation and outright plagiarism are the most sincere forms of flattery, I thought something of my own design would be a better contribution to the LEGO community.  I present my Talon Track Car.

You may find the full gallery here, and the instructions here.

I designed this car to be fast and stable, just like a track car.  I started with a drivetrain that would be reliable and effective.  A PF XL for drive, and a PF M for the steering.  I placed the PF M in the front mounted directly on the suspension unit, with a return to center spring in the middle of the mount.  The system is set up differently than in my Rumble Bee, but uses the same return part.  Each suspension arm would have a single shock absorber.  Directly behind the steering motor was the XL for the drive.  It was geared up with a 20z/12z ratio, with the driveshaft connecting directly to the 20z gear that turned the differential.  The rear suspension used an independent setup that was developed a long time ago for my Red Car Bigger (great name, huh).  If it’s not broke, don’t fix it.  The suspension was planted.  I placed the rechargeable battery box and the IR receiver behind the rear axle.

The car was quick, and didn’t have any problems, but faster would have been cool.  The return to center system worked well, especially for the quickness of the car, and the quickness of the steering.  It was easy to control.  The car was robust, and crashed well.  So go ahead and build your own.  Enjoy.

Flat 6


thirdwigg:

Every once and a while I get picked up by another LEGO blog. I am honored when it happens as it show others value my work. However, it seems to happen when I lease expect it, and in creations I find fun, rather than significant.  Thank you none the less.

Thanks to the Lego Car Blog for posting my Dune Buggy and my Zil 132, and The Brothers Brick for Posting my Rumble Bee.  Spreading thirdwigg is deeply appreciated.

Originally posted on The Lego Car Blog:

Technic Dune Buggy

Porsche Powered Dune Buggy

This monster dune buggy was unearthed by the Elves on MOCpages. K Wigboldy has included steering, all round independent suspension and, best of all, a huge six cylinder engine hanging out the back.

View original

Rumble Bee


It has been six years since I bought my F1 Wheels and Tires.  I bought four, and I paid a lot for them.  To date, I have used them once in my Red Sedan; and only two of the four that I own.  For some reason, I decided I needed to use them again and I wanted to do a small little project.  I was recently reminded about a childhood video game P.O.D. racing, and thought the car I was designing would fit right into the game.

The car is a simple design; a drive motor, a steering motor, a battery box, and a receiver.  I knew I was going to design a three wheel car.  I wanted to have the rear wheel driven by a PF XL, and a single PF M with a simple return to center system for the steering.  After a couple of designs, I decided to place the PF XL motor in the hub of the single rear wheel.  I tried a couple of designs to gear the motor up for a little more speed, all with various locations in the car.  Nothing worked as well as I wanted.  The speed was sufficent, and placing the motor in the hub allowed for a super short wheelbase.

Because the PF XL was place in the rear, I had a lot of space for the rest of the Power Functions equipment.  I placed the battery box directly in front of the rear wheel right at the bottom of the car.  The front steering axle was place next in front of the battery box.  The car had a short wheelbase of only 18 studs.  On top of the battery box, I placed the PF IR reciever and the PF M motor which was for the steering.  The steering motor passed an axle straight through a Spring Loaded Connector to move a 3L liftarm which connected to the steering rack with a 6L steering link.

I added a simple body using the orange panels from 8110.  Keeping with to story of P.O.D. I wanted to keep an agressive stance and look to the car.

The car ran well, and was plenty quick.  The steering was sharp and the car was well planted on the road.  I had a good time with the design.  Now I need to come up with another use for my F1 wheels.

The full gallery may be found here, and instructions here.

Red Sedan


When I got out of college, I started getting back into LEGO; the end of my “dark ages.”  I wanted to make a large supercar, just like everyone else.  But after my first attempt, there were a couple of things I wanted to improve, and the first car did not really look right.  OK, so what needed to change?  I needed to stretch the car, and make the stance a little better, add some features, and make it as real as possible.

See full gallery here.

I used the dementions of the 2005 BMW 5 series as my template.  From these demensions I used the F1 Racer wheels and tires to set the scale, then I determined the wheelbase, got the width, and I went to work.  I first made the rear suspension unit, and then the dual cam V-8.  Then I linked the two with a 4 speed transmission, and a long driveshaft and added a simple parking brake.  It took a little work, but I then added the front suspensions.  I have found it best to use technic beams to mount the front suspension. The A-arms are then attached to this structure, with the shock absorbers placed on this structure and braced with liftarms.  I then connected this directly to the front of the V-8, and connected it to the rest of the chassis with a simple frame.  I used the old steering mounts of the old 8865 supercar, and connected them to the steering wheel through an upside down mounted steering rack.  Of note, the car was going to be big and heavy.  I had to find a way to get two hard shock absorbers at each wheel which limited the suspensions options I had.  In addition, I added a front and rear sway bar, which took a little more space, but it worked.

Then the body.  I worked first on the doors, and the front bumper.  I used a dual pivot design for the doors so they would open even though bricks do not work well with pivots.  Then I did the front and rear quarterpanels, and set the rear bumper in such a way that a full size spare tire would fit.  I then worked on the interior.  I designed a simple tilt steering using a worm gear, and a universal joint.  I made sure to use the great front seat design by Pixsrv, added a rear bench seat, funished the trunk and added all the little compartments in the center console and glovebox.

I finished with rest of the body work.  The roof had a sun roof, and the trunk would have a damped shock to hold open the  trunklid, and added small details and some mirrors.  It was big, and it was done.  I was pleased with my first large car.  It still my most popular on Brickshelf.com.

All in all it was a great experience to learn about how to make a large car, and all the challenges that go with that.  Frankly, since this design, most of my cars have been a little smaller, as it makes the suspension and steering work a little bigger.  Lessons learned.

The full gallery may be found here.

Follow

Get every new post delivered to your Inbox.

Join 29 other followers