CAT 573C Feller


LEGO takes up space.  We all know this, and yet we still seem to try to cram as many working functions into a MOC as we can.  Sometimes it works out well.  Sometimes we have to scrap a few functions.  Other times, the functions are so dense you really cannot believe you got it to work.  This is the story of my wheeled feller.

The full Gallery may be found here. Instructions may be purchased for $5 USD.  Buy Now Button

CAT 573c Feller

I have been thinking about making a feller for about two years now.  It is a project I have never seen done before, with the exception of two tracked fellers (OK, and my other one).  Over this time, I have been planning, acquiring parts, and making plans, and over the last four months I have been building.  Nothing I have made has been so complicated or so dense.  There is no space left.

As I always do, I stared with the dimensions of the vehicle.  The schematics for the CAT 573C were easily available, so I stared with the chassis.  I knew space would be an issues, so the driveline had to be simple and compact.  The Power Functions XL motor would be geared down 3:1 and mounted just behind the rear axle.  A drive shaft would move through the steering pivot to the front axle.  The rear axle would have simple pendular suspension.  The steering would be completed by two linear actuators placed on either side of the pivot with a PF M motor on top.  Simple enough.

From here, things got complicated quickly.  The MOC would have four remaining functions.  The feller saw, the grapple arms, the feller tilt, and the feller lift.  Since trees are rather heavy, fellers are designed with as many of the system mechanics behind the rear axle.  As such, all of the functions I would add would need to be in the rear, as the front would not have any space.  I quickly learned this would not work.

Eventually, I found what would fit.  The IR Receivers would make up the rear bumper, and the battery box would be directly over them, off to the left.  Two PF Ms would be on the right and would drive two mini Linear Actuators.  These would move two pneumatic valves. These pneumatics would move the lift function and the grapple arms function.  An air tank would supply the pressure from a pneumatic pump placed on the driveline.  Another PF M would be placed over the front axle to give the feller head the tilt functions (it should be noted, 7 designs, and five weeks were spent on this feature alone).  The final PF M was in the feller head, and would drive the feller saw.

After packing, repacking, and packing again, all the features we set.  Then all the cabling and hosing were placed.  No easy task, as I was running out of space, and 25 or so hoses, and 10 cables take up a lot of room.  I added some comfort features to the cable, including a (half) chair and a roll cage.  And so Mr. Technic could get in, a little step.  Then a lot of paneling for the rear, including some access doors on the rear, and the model was done.  Here it is in action.

As you can see in the video, the MOC worked well, but some of the functions did not work as clean as I would have liked.  The drive and steering were fine, with an easy drivability.  There was a lot of mass in the back, so sometimes the torque from the drive motor would cause the back to tip.  The saw worked well enough, and for the most part so did the tilt, but the pneumatic lift struggled.  It was a little overloaded because the saw unit was too heavy.  The grapple arm worked well, but for both pneumatic rams were hard to control.  As always with LEGO pneumatics, they too often are off or on.

Until the next MOC, happy building.

Spitfire Mk IIa


I am not a very ambitious person.  Sure I made it through college and graduate school, and have managed to work well in job for a while now, but for me to do something challenging, takes a lot of convincing.  It doesn’t happen often.  This project was a little bigger than it should have been, and I got in over my head.  This is not the first time this has happened (1, 2).  The project was interesting enough for me to keep moving forward, even after six months.  I present my 1:12 scale Spitfire Mk IIa.  I hope you enjoy the work.

View the full gallery here, and the work in progress gallery here.  Flickr set is here.

Spitfire 3/4

First, the whole reason I did this project was because of the excellent Baby Twin Otter of Cpt. Postma completed two years ago.  If you have not yet seen this creation, take a look at the above link.  When I first saw this model, I went home a made his variable pitch propeller   This was the first step to my Spitfire, though at the time I did not know it.

I chose to do the Mk IIa version Spitfire for a couple of reasons.  First, the model had to have a three blade prop, because I wanted to use Cpt. Postma’s design.  Spitfires stopped using a three blade prop somewhere in the middle of the MkV series.  Second, I wanted to model a eight gun variant, rather than the cannon variant because I think it has a cleaner look, and I love the red and yellow leading edges on the eight gun variants.  Finally, while it would have been great to do a early model Spitfire with the dark tan camouflage  adding both the dark green and dark tan would have been too expensive, and even more ambitious.  I found a number of pictures of a certain MkIIa with all the features I wanted.  I chose a Spitfire flown by Lt. Tomas Vybiral, who was a Czech pilot with the French Air Force.  The plane was Spitfire P8081 when he flew for the British in Squadron No. 312.  It had simple markings for me to recreate, a camouflage pattern I would be able to do (read afford), and I found some good documents to help my modeling.

Next came the internal planning.  The Spitfire would have working ailerons  flaps, rudder, and elevators (with correlating pilot controls), prop, prop pitch, V-12 engine, and retracting landing gear, all within the 1:12 scale.  Once I had the dimensions calculated, I started placing things in a simple “placeholder” model on my floor.  I constructed the engine, the propeller spinner, pedal/joystick assembly and placed them in the placeholder.  Then I made the placeholder 3D.

It took two months to get the rest of the internals all set.  The required moving various parts of the 3D placeholder, and adding additional parts.  The joystick is connected through various liftarms to the rear elevator, and by axles to the ailerons   The pedals connected though a shaft to the rear rudder.  You can see the gears on the rudder.  The flaps have a simple lever in bottom left side of the cockpit.

The rest of the functions are controlled via Power Functions.  The small 8878 battery box is placed behind the cockpit, as is the IR receiver.  A PF M is housed under the V-12 and drives four mini linear actuators for the landing gear.  It is strong and simple, and works well.  It does not have the correct Spitfire landing gear geometry, but if someone can figure out a way to do it at this scale…well, I can’t figure it out.  A second PF M is used to power the propeller   It is placed directly behind the V-12.  Finally, a third PF M is placed behind the V-12, and works through a system of gears to power two mini linear actuators to move the pitch of the prop.  It’s messy inside, but it has everything I wanted.

After the internals, I had no idea how hard the rest of the Spitfire would be.  LEGO, you need to make more parts in Dark Green.  I know how selfish that sounds, but it would have been more helpful.  Thank to some newer sets, like the 10226 Sopwith Camel, and the  21016 Sungnyemun, it made it much more possible, but still limited me in many places.  I spent the next four months acquiring parts, and placing small plates over the rest of the plane.  With some help on the roundels from Dieterr89, it eventually came together.   The bodywork took a long time.  Too long.  And the lack of some parts in Dark Green forced me to make some concessions.  The canopy frame should be all Dark Green, but it was not going to happen with what is available.  The camouflage is not as clean as I would have liked, and there are some abrupt steps where some plate limitations made the transition for one part to another not smooth enough, such as on the rear fuselage.  Also, try as I might, I could not get the leading edge of the wing to be perfect.  The dihedral did not help either, nor did the yellow leading edge.  Also, the gaps between the control surfaces and the fixed part of the wing and stabilizer was more than I would have liked.  But this has happened before.

I am please with how it turned out, but there are some parts that I wish would be better.  I never seem to remember this when I start a project in this scale, but free moving functions just do not operate well as you hope when you keep adding parts.  The control surfaces work, but they could be smoother and lighter.  The powered functions worked flawlessly. I was very please with the way the markings turned out.  They are not as flush with the plane as painting would cause you to believe, but they make the Spitfire clearly identifiable.

My father would always tell me “never say never,” but it may be a long time before I do another large plane.  But I guess I said that back in 2008.

I hope you enjoy.  Thanks for reading.

Mini Feller


Building with Lego is a continuous formation of compromise.  While my ideal of what my Mini Feller would include was significant, what I could actually accomplish was a compromise of space, function, realism, and frankly the amount of frustration I was willing to tolerate.  So while the final result is a watered down version of what I would have liked, it was the result of me compromising amidst the situation.

Instructions can be found here.

I wanted to make a small model go with my Mini Skidder.  The MOC had to be the same scale, have a decent level of fuctions, and work with my Skidder.  A feller seemed like a good option.  As I looked at what function this MOC would have, I ambitiously stated it must have a working blade, working steering, working grapper, and a working tilt function.  All these functions would be controllable on the back or on top of the cab.

The steering was simple enough.  I added a small turntable at the bottom of the chassis to give the frame some support.  The HOG steering axle would come out at the top of the cab, and join the front and the rear with a small link arm.  Simple enough.  Likewise, I added a differential in the rear part of the chassis, geared up the rotation, sent it though a couple of universal joints to the front of the Feller, connected it through a pair of 12z bevel gears, and attached a saw blade.  Again, simple enough I had steering and a working blade.

It got complicated as I tried to add the arm features.  The lifting of the arm would be done with a 8z gear with a worm gear.  Because there was a driveshaft to the front blade, the 8z gear needed to be placed on the axis of the arm, but out of the way of the driveshaft.  The required a 1 stud offset that also needed to be directed back through the steering axis to the rear of the Feller.  I used a CV joint to allow the axle to slip as the feller would steer.

The tilt feature would require a parallel control that would allow the elevation happen while keeping the feller blade parallel to the ground.  This would require another 8z worm gear connection at the lower rear pivot point of the arms.  I was running out of space.  Of the 7 studs to work with, one was used for the universal joint, one was used for the lifting gear, one for the mounting liftarm, and one for the lifting arm.  I could not add another worm gear system, while being able to actually lift the feller blade.  Additionally, adding a link for the gathering arms would also have to work through this pivot point if I wanted to isolate the movement from the lifting and tilting feature.  I had to give.  A compromise was necessary.  I felt the stability of the feller blade had to be paramount, so I added another support arm.  I also felt gathering arms must remain as they are essential to a feller.  Sorry, but the tilt feature got the ax.  It was the correct decision, but it still tasted a little sour.

It was a great little MOC, and I had a good time creating it.  I hope you enjoy building your own.  The full gallery can be viewed here and the instructions can be viewed here.

Thanks for reading.

Flat 6


thirdwigg:

Every once and a while I get picked up by another LEGO blog. I am honored when it happens as it show others value my work. However, it seems to happen when I lease expect it, and in creations I find fun, rather than significant.  Thank you none the less.

Thanks to the Lego Car Blog for posting my Dune Buggy and my Zil 132, and The Brothers Brick for Posting my Rumble Bee.  Spreading thirdwigg is deeply appreciated.

Originally posted on The Lego Car Blog:

Technic Dune Buggy

Porsche Powered Dune Buggy

This monster dune buggy was unearthed by the Elves on MOCpages. K Wigboldy has included steering, all round independent suspension and, best of all, a huge six cylinder engine hanging out the back.

View original

Rumble Bee


It has been six years since I bought my F1 Wheels and Tires.  I bought four, and I paid a lot for them.  To date, I have used them once in my Red Sedan; and only two of the four that I own.  For some reason, I decided I needed to use them again and I wanted to do a small little project.  I was recently reminded about a childhood video game P.O.D. racing, and thought the car I was designing would fit right into the game.

The car is a simple design; a drive motor, a steering motor, a battery box, and a receiver.  I knew I was going to design a three wheel car.  I wanted to have the rear wheel driven by a PF XL, and a single PF M with a simple return to center system for the steering.  After a couple of designs, I decided to place the PF XL motor in the hub of the single rear wheel.  I tried a couple of designs to gear the motor up for a little more speed, all with various locations in the car.  Nothing worked as well as I wanted.  The speed was sufficent, and placing the motor in the hub allowed for a super short wheelbase.

Because the PF XL was place in the rear, I had a lot of space for the rest of the Power Functions equipment.  I placed the battery box directly in front of the rear wheel right at the bottom of the car.  The front steering axle was place next in front of the battery box.  The car had a short wheelbase of only 18 studs.  On top of the battery box, I placed the PF IR reciever and the PF M motor which was for the steering.  The steering motor passed an axle straight through a Spring Loaded Connector to move a 3L liftarm which connected to the steering rack with a 6L steering link.

I added a simple body using the orange panels from 8110.  Keeping with to story of P.O.D. I wanted to keep an agressive stance and look to the car.

The car ran well, and was plenty quick.  The steering was sharp and the car was well planted on the road.  I had a good time with the design.  Now I need to come up with another use for my F1 wheels.

The full gallery may be found here, and instructions here.

Follow

Get every new post delivered to your Inbox.

Join 25 other followers