JCB 714


My repertoire has become quite diverse over the years. I have made large cars, large planes, MODs, and many other types of builds. I enjoy those builds, and I get an immense amount of satisfaction completed them. Recently I have enjoyed making smaller, non-powered, Technic MOCs. I can generate more small build ideas, I can stay motivated better, and I enjoy the playing with final result more. So I made another small MOC, the JCB 714.

The full gallery may be found here. Instructions may be purchased for $5 USD.

Buy Now Button

JCB 714

This MOC started when I was browsing the JCB UK website. I thought the 714 would be a fun little project that would have some nice features, and would utilize some of my collection that is not currently being used. I started working on the frame. The MOC would have a four wheel drive system, suspension, steering, and a dumping back. I designed two suspension/steering designs, and while the first one was awesome, it was not as stable as I would have preferred. So I reverted back to the design utilized on the real JCB. It was not as flashy, but it worked well. A turntable is planted behind the steering pivot, with the drive axle moving through the center of both. A liftarm was placed on the left to operate the steering function. The drive axle would connect to both axles through a 12/20 gear reduction which connected them to two differentials. The I3 motor was placed in front of the forward axle.

The rear was more challenging than I expected. First, I had to plant the mLA’s in such a way that they could be connected by a single axle that would not impede the driveline. Second, the mLA’s had to operate in such a way that the bucket could do the full range of motion; nearly 90 degrees. Third, the shape of the bucket did not work well in LEGO, as there were limited flat surfaces. Thankfully the sides were flat, and some of the bottom. The bottom was connect to the dump pivot, and the sides would hold the angled panels. Finally, it had to make sure the rear wheels could still move freely. While there are still some holes in the dump, it works well enough to transport a bunch of bricks.

The cab built up fairly quickly, and allowed me some space to add the rear window grate, and a exhaust pipe. The hood can open, and there are steps to get into the cabin. Safe egress is important.

As I am finding with MOCs that do not utilize Power Functions, the MOC functioned well, every time. No maintenance is needed, gears do not skip, and the MOC works as it is designed. This is part of the reason I am building these kind of MOCs more often. The MOC worked as it was designed, just like a MOC should.

Thanks for reading and happy building.

 

 

Iveco XTR


After a couple of more complex projects it is nice to take a break to do two simpler projects. When I need a little bit of a design rest, I do a trial truck, and usually a fictional one, so I can build as I please.

The full gallery can be found here, and free instructions can be found here.

Iveco XTR

After building a number of trial trucks, I have found some features I like to have on my trucks. Note, these features may be prioritized differently if I was participating in a Truck Trial race. These features I like are linked suspension, PF XL motor for drive, tall clearance, and a center mounted battery box. As I was making this truck for my own pleasure, I forced myself to include all of these features.

I usually start a truck with the axles, and the Iveco was no different. I created the axle with a portal axle build around my favorite piece for both the front and the rear. I also added the space to fit both a differential, or knob wheels for the final drive (though the pictures only show the latter). This would allow me to switch the traction of the truck, and allow for a minor gearing change. While the changeover takes a little bit of time, it’s a nice feature and the gives the truck some versatility. I placed the steering motor directly on the front axle with allowed the middle of the truck to be simplified vastly. In the center of the truck is the battery box mounted longitudinally, and a Power Functions XL motor in the rear. This keeps the heaviest components of the truck in the center and low.

The linked suspension is a setup developed by other that connect two pendualar axles together. Each left side has a linkage that connects the two left wheels together, and the right wheels have the same. This keeps the wheels planted as the pressure from the terrain is balanced across all four wheels. When one wheel has to go up to follow the terrain, the rest of the wheels adjust. It is simple, effective, and keeps the truck a little more planted than a suspension utilizing shock absorbers. Otherwise the truck bounces a little during an obstical.

As you can see in the video, the battery box is getting a little tired, and the snow as a little mushy, but the setup worked well. The truck stayed planted, and it was nice to have two final axle options. It is a simple design that does not require too many hard to find parts, so if you need a good little afternoon project, give the Iveco XTR a build, and tell me what you think.

OK, off to some more complicated builds. Check The Queue. There is some fun stuff coming. Until then, happy building.

8081 RT


I have said it before; I really like set 8081. It has so many possibilities for improvement. After talking a look at RM8‘s design, I thought I should do a street version of the 8081 to follow up on the 4×4 8081 I built a while back.

The full gallery can be found here, and free instructions can be found here.

8081 RT Front

I took the existing bodywork and frame of the 8081, and chopped out the rear suspension unit to revise the rear suspension design. I wanted an independent setup with a differential. As I have used a couple of times before, I used a floating differential design. The differential is attached to the driveline much like a live-axle set up, but is connected to two independently mounted wheel hubs. I have used this before, and I like the way it works. It allows for a driven axle with independent suspension in a very narrow setup. This way each wheel can move independently, but it does not require two universal joints on each side of the differential. Since the differential is not fixed to the chassis, it has to be braced to the driveshaft. While this set-up is not often used in real cars, it works well for LEGO designs. I used the new wheel hubs, and attached them via a short upper arm, and a long lower arm so the camber would change through the suspension travel.

Moving to the front, I kept the V-8 as in my 4×4 8081, and built the rest of the front around the motor. I used a suspension design similar to 8081, where there are two equal length arms holding the steering pivot. A single shock absorber is used for each side. All told, the car is about two studs lower, due to the new suspension, and the new tires.

It is not much of a redesign, but sometimes I need a project that is not a significant, and allows me to just build something simple.

Happy Building.

MAN TGS Tipper Crane


I like to have a LEGO MOC on my desk at work. I find it to be a good conversation starter for visitors. It also gives my fidgety fingers something to do while I am on the phone. Plus it’s just cool. After I finally removed my 4×4 8081, I figured it would be time to add something new.

The full gallery may be found here. Instructions may be purchased for $5 USD.  Buy Now Button

MAN TGS

After a little research, I decided to make a MOC based on a MAN TGS tipper crane truck. I knew the MOC would not have any Power Functions, so I had the space to add a number of features. The truck would have 3 axles, a 4 function knuckleboom crane, three way tipper bed with drop sides, working outriggers, and of course working steering.

I started with the crane. It gave me a little trouble, but after trying countless linkages and connections, I came up with a simple design. I worked from the hook down to the truck. I started with the extending boom which was simply a 13L gear rack, and then added it to the main boom. I used a mini linear actuator (I love these) connecting to a simple linkage to the boom could rotate nearly 180 degrees. While the linkage could be a little more sturdy, it functions well and is controlled from a gear on the back of the crane. Finally, I mounted the second mini linear actuator directly on the turntable to lift the crane. This would be controlled with a gear on the back of the truck.

After the crane, I added the outriggers directly to the turntable. After toying with a lot of complex designs, I settled on something simple. Two 13L gear racks would move to out of the truck, and a pin with stop would be connected at the end and would move to stabilize the truck. I worked with the gearing for the stabilizers and the crane, and managed to get a working system. The center of the truck is pretty dense.

Next was the bed. I developed a simple linkage that would allow another mini linear actuator to tip the bed up. I connected the linkage so the bed could tip three ways. The whole system is three studs tall. At each corner of the bed, I added a simple connector so the bed could tip each way. The direction of tip could be adjusted based on which axles are removed. You can also remove a axle for each side, so contents could be dumped in three directions.

Finally, I worked on the body and the finishing of the truck. I think I got the look of the TGS pretty close, and added features like working doors, an exhaust pipe and an intake. Also, every Technic model in this scale needs to have blue seats, so I added them.

I wish the crane on the truck could support a little more, but other than that, I am pleased with the results. I really liked how the bed turned out. It’s simple and effective. And it all looks quite nice on my desk.

Until my next MOC (or MOD?), happy building.

Instructions can be purchased for $5 USD. Send and email to thirdwigg@gmail.com if you want a set.

The Sod Farm


During two summers when I was in college, I worked on a Sod Farm. It was, let’s say, a developmental experience. The days were hot, long, and often included nothing more than sitting on a tractor listening to the diesel drone as I would slowly mow the sod at 1.8 mph (2.9 kph).

While I would often  recite the dialogue of Sgt. Bilko in my head to pass the time, I did manage to develop a deep fascination for the machinery used. Two months ago, Eurobricks decided to hold a contest to create three Technic creations that would work together. After some thought about the rules, the parts I had, I thought I could create an entry, and offer something a little unique.

The full gallery may be found here, and instructions here.

The Sod Farm

The contest required three models that would work together in a particular setting. Each must have a part count that did not exceed 500 parts, and each had to be unique. While trailers were acceptable, I somehow felt offering an entry with a trailer did not allow for enough creativity. As my thoughts wondered on a bike ride, I decided I would create a small truck, a little forklift, and a sod harvester. My design would harken back to those days on the sod farm. Rather than the Freightliner Columbia and Piggyback Forklift we used, I designed a MAN TGS and a JCB 150T to have little more international flair, and frankly, to have a little more color. We used a Brouwer SH 1576 to harvest the sod, so I thought I should keep that machine.

The MAN TGS went through a number of revisions. Each was done to reach the part limit. The final MOC ended with a three function knuckleboom crane and a simple bed. In addition to the steering and the working doors, the crane is fully functional. The rotation is handled by a wheel on the right of the truck, and the main lift is handled by a wheel in the rear of the truck. The second stage lift and boom extension is handled by a small wheel at the top of the crane.

The JCB 150T was a simple and straightforward build. Recreating a MOC with a single arm lift created some additional challenges. A single mini linear actuator was used to lift the boom, and a worm gear system was used to adjust the tilt of the forks. The offset cabin caused some frustration, but I eventually figured it out.

Finally, the Brouwer SH 1576 was the purpose of this project. After a little research, I determined the scale of the project. I then started building. I usually add too many features to a MOC, and this harvester was no exception. The rear wheels spun a single differential, which ran straight to the front to power a two cylinder motor. Off the driveline was a PTO between the motor and the differential which would run the harvesting arm. The harvesting arm has a track system to drive the pieces of sod up to the back of the harvester to load the sod on the pallets. A simple cutting head was added to the front which had a cutter to cut the sod off the ground, and a timed cutter on the top to make sure each piece of sod was the correct size. After some work I added a simple steering system controlled by the smoke stack. Finally, I added a forklift system to hold and drop the pallets of sod off the back, and a small standing pad for the pallet worker.

This was the first LEGO contest I have entered since 1994. I hope you enjoy my entry. Thanks to Eurobricks.com for the contest. I appreciate your vote at eurobricks.com. In addition, instructions for the models can be found here.

For those counting (me), the number of parts needed for each MOC are: MAN TGS- 557, JCB 150T- 287 (inc 58 tracks), Brouwer 1576- 484 (inc 43 tracks)

Bedford MWD


I have said it before, but my favorite things to build are Trial Trucks.  The combination of the driveline construction, forces on the truck, diversity of body style, and various propulsion systems offered by LEGO combine for a great building experience.  Because of this, I usually am building a Trial Truck, or have one built at all times.  But for some reason, this truck seemed to sit for a long time unfinished.  I struggle with deciding if a truck will be a model of something, or something fictional.  This decision is often made too late in the construction process.  After toying with a Daimler Scout body, I decided I needed to finish this project and the Bedford MWD body was chosen.

The full gallery may be seen here.

01

After some some experience with various designs, I decided to construct a truck around a simple locking differential idea I had recently designed.  Because I would need an extra IR Receiver for the locking function, I decided a simple two speed gearbox (1:6 and 1:10) could use the other IR channel.  I placed all the controls in the middle of the chassis.  The driveline and the steering axle would run through the middle.  On the left side was the Battery Box and the motor for the gear change, and on the right side was the XL drive motor, the gear box, and the motor for the locking differential mechanism.  The steering motor would hang out the back of the chassis over the rear pendular suspension unit.  Both axle were connected by my favorite linked suspension system.

zbedford

Each axle took a little bit of work.  I selected a simple design for the locking differential.  Basically, it is a 24 tooth differential placed directly next to a 24 tooth gear.  A pair of sliding 12 tooth double bevel gears slide back and forth one stud to connect only with the differential, or with both the differential and the neighboring gear locking out the differential.  After toying with some old flex cable, and some pneumatics, I figured I was making it too complicated.  I added a small pivot with a Small Technic Steering Arm, and connected it to a 9L link.  This way both axles could be connected, the suspension and lock could keep operating unaffected by each other, and it all could be controlled by a mini Linear Actuator.

Initial tests were positive, so I then decided to figure out a body for the design.  I worked for too long on a Daimler Scout body.  I had the structure made, but the paneling was just not happening.  After sitting on the project for 5 months, I decided it was time to make something new.  The Bedford design worked well, and helped my get excited again in the project.

Now, once I got outside to drive the truck a glaring problem occurred.  The bevel connection in each axle that transmits the longitudinal drive forces to transversal drive forces kept slipping.  You can hear it in the video.  Because of this, it did not matter if it had locking differentials, or if it had a two speed gearbox, or if it had working suspension.  Anything could stop it.  I though about reworking the axles, but then, I have been working on this for 11 months, it was time to be done.  I’ll use the locking mechanism again.  That worked great.

Thanks for reading.

CAT 573C Feller


LEGO takes up space.  We all know this, and yet we still seem to try to cram as many working functions into a MOC as we can.  Sometimes it works out well.  Sometimes we have to scrap a few functions.  Other times, the functions are so dense you really cannot believe you got it to work.  This is the story of my wheeled feller.

The full Gallery may be found here. Instructions may be purchased for $5 USD.  Buy Now Button

CAT 573c Feller

I have been thinking about making a feller for about two years now.  It is a project I have never seen done before, with the exception of two tracked fellers (OK, and my other one).  Over this time, I have been planning, acquiring parts, and making plans, and over the last four months I have been building.  Nothing I have made has been so complicated or so dense.  There is no space left.

As I always do, I stared with the dimensions of the vehicle.  The schematics for the CAT 573C were easily available, so I stared with the chassis.  I knew space would be an issues, so the driveline had to be simple and compact.  The Power Functions XL motor would be geared down 3:1 and mounted just behind the rear axle.  A drive shaft would move through the steering pivot to the front axle.  The rear axle would have simple pendular suspension.  The steering would be completed by two linear actuators placed on either side of the pivot with a PF M motor on top.  Simple enough.

From here, things got complicated quickly.  The MOC would have four remaining functions.  The feller saw, the grapple arms, the feller tilt, and the feller lift.  Since trees are rather heavy, fellers are designed with as many of the system mechanics behind the rear axle.  As such, all of the functions I would add would need to be in the rear, as the front would not have any space.  I quickly learned this would not work.

Eventually, I found what would fit.  The IR Receivers would make up the rear bumper, and the battery box would be directly over them, off to the left.  Two PF Ms would be on the right and would drive two mini Linear Actuators.  These would move two pneumatic valves. These pneumatics would move the lift function and the grapple arms function.  An air tank would supply the pressure from a pneumatic pump placed on the driveline.  Another PF M would be placed over the front axle to give the feller head the tilt functions (it should be noted, 7 designs, and five weeks were spent on this feature alone).  The final PF M was in the feller head, and would drive the feller saw.

After packing, repacking, and packing again, all the features we set.  Then all the cabling and hosing were placed.  No easy task, as I was running out of space, and 25 or so hoses, and 10 cables take up a lot of room.  I added some comfort features to the cable, including a (half) chair and a roll cage.  And so Mr. Technic could get in, a little step.  Then a lot of paneling for the rear, including some access doors on the rear, and the model was done.  Here it is in action.

As you can see in the video, the MOC worked well, but some of the functions did not work as clean as I would have liked.  The drive and steering were fine, with an easy drivability.  There was a lot of mass in the back, so sometimes the torque from the drive motor would cause the back to tip.  The saw worked well enough, and for the most part so did the tilt, but the pneumatic lift struggled.  It was a little overloaded because the saw unit was too heavy.  The grapple arm worked well, but for both pneumatic rams were hard to control.  As always with LEGO pneumatics, they too often are off or on.

Until the next MOC, happy building.

Cargomaster Crane


We all have our favorite LEGO sets.  Then we also have sets that we think were pretty cool.  Set 6352 from 1991, the Cargomaster Crane was one of these sets for me.  It was a set simple set, it was perfect for a growing child.  Small, playable, yellow, and it could lift things.

Recently, I decided I wanted to make a little Technic crane.  I researched a number of designs, none of which really struck me as something I wanted to pursue.  I kept coming back to 6352. Why not make a crane like that?  Perfect.  I wanted it to be a nice homage to this classic set.  I was going to make is just like 6352.  Double the size, same shape, complete with container and tractor, and of course a driver.  The full gallery may be found here, and instructions can be found here.

6352 Technic

I stared with a simple frame built for the outriggers at both ends.  I knew I was not going to be able to add a more complex outrigger system at this scale that would reflect the original crane, so I made manual outrigigers just like the original.  I added two steering axles so the crane could drive to and from the site, then I placed a turntable right on top of the chassis.

As I started the superstructure, it become very clear very early, that having an offset crane boom like the original model, was not going to be a good idea.  My model was going to look off, and the balance of the offset boom was going to make stability, both for the superstructure, and the crane as a whole, a problem.  I knew the size of the boom, and decided to place it in the center of the crane.  I then placed the cabin, and set it up for the little technic figure.

The boom was relatively simple; two stage, and 23 studs long.  The outside was simple and straightforward, meant to be sturdy and strong.  The pivot was at the rear on top of the winch, and the elevation ram was connected forward under the front of the boom.  There was a simple worm gear under the front that would drive a set of gear racks, to drive the inner boom.  The inner boom would hold the final boom which was only a series of plates.  Each stage was connect by a two cables to make sure all the booms moved together in unison.  It worked well, even under load, as you can see in the video.

The model worked well, and had perfect balance.  The simple boom extension worked well, as did the winch.  The outriggers gave appropriate stability through all positions.  And it looked very similar to the original model, even with the little tractor.

Talon Track


Every once and a while I see something so creative I have to build something like it.  I happened with my HH-65.  It happened with my Zil 132.  And to some extent it happened with my Spitfire.  But when I saw the Urban Buggy from Chrismo, I though I have to make something like it.  It was such a fresh and creative design.  It had such great lines, a perfect stance, and a unique driveline setup.  But while imitation and outright plagiarism are the most sincere forms of flattery, I thought something of my own design would be a better contribution to the LEGO community.  I present my Talon Track Car.

You may find the full gallery here, and the instructions here.

I designed this car to be fast and stable, just like a track car.  I started with a drivetrain that would be reliable and effective.  A PF XL for drive, and a PF M for the steering.  I placed the PF M in the front mounted directly on the suspension unit, with a return to center spring in the middle of the mount.  The system is set up differently than in my Rumble Bee, but uses the same return part.  Each suspension arm would have a single shock absorber.  Directly behind the steering motor was the XL for the drive.  It was geared up with a 20z/12z ratio, with the driveshaft connecting directly to the 20z gear that turned the differential.  The rear suspension used an independent setup that was developed a long time ago for my Red Car Bigger (great name, huh).  If it’s not broke, don’t fix it.  The suspension was planted.  I placed the rechargeable battery box and the IR receiver behind the rear axle.

The car was quick, and didn’t have any problems, but faster would have been cool.  The return to center system worked well, especially for the quickness of the car, and the quickness of the steering.  It was easy to control.  The car was robust, and crashed well.  So go ahead and build your own.  Enjoy.

Mini Skidder


My Mini Feller started after I made this MOC.  I wanted to do a small little project, and I wanted to do something fun and simple, and I thought the Mini Feller would be a great partner to the Mini Skidder.  The skidder is a simple design, that uses simple construction techniques, unlike the Feller.  Also, you can build your own.  Feel free to check out the instructions here.

I started with the rear grabber.  I added a simple worm gear to 8z connection that moved one of the arms, and connected it to the other arm with a 16z to 16z connection.  The axle that connected to the worm gear would exit out of the top of the grabber and allow for movement with your hand.  I attached it to an arm that would attach to the MOC.  The arm would be connected by two arms on each side of different lengths, so the grabber would move in an arc, and connected to the chassis.  On the chassis I connected the rear arm to a 24z gear, and placed a worm gear above it.

I connected the rear part of the skidder to the front part with the new small turntable.  This allowed for simple gear connection with a 20z gear to the Hand-Of-God steering.  This worked well, and kept the model simple.  Just in front of the steering mechanism, I added another 24z gear for the plow.  Taking a cue from set 8069, I set the worm gear vertically, and connected it to the exhaust stack; simple and pretty.  I then filled in the space.  A simple body was added, as was the plow, and wheels, though not in the cleanest of ways.

It was fun little design with simple solutions for the functions.  It’s not as complicated or compromised as my Feller, but still a playable MOC.  Also, its easier to build should you feel the need.

The full gallery may be found here.

Thanks for reading.

Follow

Get every new post delivered to your Inbox.