9393 Updates


Every once and a while, I find myself building an older set from my collection. I find it relaxing not to think about design and simply follow instructions. Recently, I built LEGO’s 2012 set 9393, and after a couple of days, I thought, it needs something else.

The full gallery may be found on Flickr and Brickshelf. Instructions may be found here.

9393 Harrow Furrow

The LEGO set was simple with steering, lime green color scheme, a mower implement, and a system to raise and lower the implement. I decided it needed a fake motor, front suspension, a drive differential, and some bigger front wheels. I started building. Adding the motor proved to be more difficult than I thought it would be. By adding the larger front wheels, I was able to get the steering axle lower by one stud. This allowed space for the engine to be added, but did not solve the structural problem of how to mount the front suspension. I ended trying a number of solutions, but ended with one with many connectors, axles, and two liftarms running over the front axle beside the fake engine. I would prefer it to be a little more stiff, but it works. As I built the front of the tractor, I found myself adding an implement attachment point. I thought, maybe I should make another implement for the front.

9393 Engine

This is where the project grew, and grew….

Now, only the mower implement was not enough. The tractor needed a plow, counterweights, a furrow, a harrow, a tiller, and a grain cart. All of a sudden this project became much bigger. I started with the snow plow. It is a simple design with a little worm gear lift attachment. Using this type of mount, I constructed a simple furrow implement as well. The multiple wheels are meant to smash larger clumps of dirt, and push stones down under the soil. I added a basic group of curved liftarms for front counterweights. All three implements are attached by removing two axles.

9393 Snow Pusher

Most tractors have a three point attachment on the rear. The base 9393 has a two point attachment, which does not allow for a parallel movement as the impliment is raised. I went back and forth on changing this attachment point. In the end, I decided adding a parallel linkage would require a another PTO universal joint. I was not willing to add this, as it would put the implements too far behind the tractor. As such, I kept the stock 9393 motor implement the same. Using the same attachment point, I build a small harrow. The harrow is driven by the PTO shaft. Finally, I build a tiller with the fun little claw parts. I added a drawbar and a pivot, so this impliment would stay parallel to the ground.

9393 Tiller Rear

Because I still did not think this was enough, I added a hitch to the tractor, and built a grain cart. It is a simple single axle design, with sloped sides. There is a conveyor on the bottom, and a folding auger for grain extraction. Both are geared together and can be opperated by a rear HOG gear. OK, I realize it is not an auger, but rather a chain. At this scale, I could not figure out a good auger solution that did not look clunky.

9393 Update Grain Cart

Before I could think of more implement, I said “I’m done.” I was please with how it turned out. All the implements were fun, and give the MOD much more playability. The grain cart was fun to build, and made the tractor look grand. I wish the chassis of the tractor was a little stiffer for the front suspension. I had a lot of fun with this build. I am going to build another tractor before this year is done.

Until next time, Happy building!

Advertisements

Snowblower/Tractor


I participate in only some of the contests that are available in the online LEGO community. I generally participate if it meets the following criteria: Is the challenge within my competencies? Does the contest align with other responsibilities/projects to which I have already committed? Can I be competitive? Frankly, it is the last question that often stops me. The preceding two questions determine my limitations, and considering how good many other builders are it is not often I participate. With this in mind, I decided to enter the Eurobricks Technic Challenge 9 (nine already!?).

Edit 2016.02.16 : The contest has completed, and this Model came in second! See the results page here, and all the votes here. Thanks to Eurobricks for the contest.

A full gallery with Instructions can be found here.

Snowblower

Tractor

What interested me in this contest was the constraints, and to a lesser extent the topic. the constraints stipulated that both MOCs had to fit within 10,000 cubic studs. I got out my calulators, and started playing with numbers. I was hooked. Additionally, building one MOC is hard, and building two from the same parts seemed very hard. It was something I had never done, and only a few builders can develop a good B or C model. The planning stage would be critical. Both models would have to be planned together right from the beginning. I toyed with a Combine/Tractor, and a Pipelayer/Crane, and even a Airplane/Boat. With each of these designs, I realized I would be using too much space with a long appendage, such as the Combine’s implement, or the Pipelayer’s arm. The cubic studs required something more…cube shaped. I eventually settled on a Snowblower and a Tractor. Both were a little more square and had similar components (wheels, engines, colors, chain links). I knew I would need to build both together, and multiple renditions would be needed. I was ready to start building.

Snowblower Rear

Pretty early, I settled on 17x17x34 studs for the Snowblower. I challenged myself to include steering, a working blower, and a working salt spreader. I build the basics of the blower implement right away, complete with rotation coming from the truck drive. On the rear, I added an implement lift using a worm gear setup, and a quick link to the truck . Next, I worked on the chassis of the truck. I added portal axles, because I could not get the 5L wheel axles to say connected to the differential. This also helped to clear the front PTO from the steering function, which was linked directly to a HOG gear on top of the cabin. The salt spreader needed a take-off gear for the conveyor belt, and the discharge plate would be driven separately from the rear differential. The mechanics were set. I then worked on the cab. I made sure the cab, the blower, and the spreader could be easily removed by removing up to four pins for each. It’s a fun modular function that allow for other attachments.

Snowblower Modules

I first made a pile of all the parts used for the truck while it was still built, and made a first draft of the tractor. Based on the parts of the Snowblower, the tractor would have four wheels, a 2 cylinder engine, and something with a whole bunch of 3×3 round, red, liftarms. I first modeled it after a John Deere 7R series, but realized this would leave me with too many left over parts. I then tried modeling it after a Claas Saddletrac. This seemed to be a better fit. I then took apart the Snowblower, making instructions as I went. I then used these parts to make the official model B. Over the course of a week, I made many revisions.

Tractor Rear

Both models worked well, as none of the feature are too complicated. I was pleased with the A model as everything functioned as it should, and it looked great. The tractor was simple, and it’s simple functions worked well. I was pleased with how it all turned out. It was great working with a limited number of parts for the B model, but I would prefer to clean up the look of the tractor a little better. This was a great little contest. I loved the restriction of the cubit studs, and I loved having to make a MOC with a defined group of parts. Now let’s see how the voting shakes out.

 

 

Windrower


At any given time I have about 4-6 projects going on at a time. This is partly the result of the Queue, which is partly the result of my lack of focus. In the midst of all this planning, I find it therapeutic to sit down, and start something small, simple, and without a plan. Two weeks ago, right after finishing the ATS, I sat down, and in a couple of hours, completed a small windrower.

The full gallery including instructions may be found here.

Windrower

Some of my favorite MOCs are the smaller non-motorized ones I have done over the years, like my Feller, my Octan F1, my 4×4 8081, and my Sod Harvester. I built the Windrower to fit in this theme. A Windrower, or Swather, is basically a large lawnmower. The blades on the front cut down hay, and pull all the cuttings to the center to make a row of cuttings, or windrow, to be picked up later.

My version is rather simple. The two main wheels are connected to a center differental through two 8z portal axles. The differential drives a small I3 motor in the rear, and a PTO driveshaft comes out the front. The PTO drives a simple harvesting head made of four z24 gears which are connected with a number of z12 gears. The harvesting head can be raised and lowered by a simple worm gear setup. A simple steering system was created for the rear wheels, and it was connected by a liftarm to the smoke stack so you could control the steering.

The body work took a couple of Bricklink.com orders. After recently making a couple of MOCs in red, I felt the Case IH coloring would be a little redundant, so John Deere Green it was. My collection of green is growing, but there were still some parts needed. After everything arrived, I replaced all the red, and added some yellow wheels, and everything was set. A simple MOC, with some fun features, and an infrequent color.

Happy Building.

 

 

The Sod Farm


During two summers when I was in college, I worked on a Sod Farm. It was, let’s say, a developmental experience. The days were hot, long, and often included nothing more than sitting on a tractor listening to the diesel drone as I would slowly mow the sod at 1.8 mph (2.9 kph).

While I would often  recite the dialogue of Sgt. Bilko in my head to pass the time, I did manage to develop a deep fascination for the machinery used. Two months ago, Eurobricks decided to hold a contest to create three Technic creations that would work together. After some thought about the rules, the parts I had, I thought I could create an entry, and offer something a little unique.

The full gallery may be found here, and instructions here.

The Sod Farm

The contest required three models that would work together in a particular setting. Each must have a part count that did not exceed 500 parts, and each had to be unique. While trailers were acceptable, I somehow felt offering an entry with a trailer did not allow for enough creativity. As my thoughts wondered on a bike ride, I decided I would create a small truck, a little forklift, and a sod harvester. My design would harken back to those days on the sod farm. Rather than the Freightliner Columbia and Piggyback Forklift we used, I designed a MAN TGS and a JCB 150T to have little more international flair, and frankly, to have a little more color. We used a Brouwer SH 1576 to harvest the sod, so I thought I should keep that machine.

The MAN TGS went through a number of revisions. Each was done to reach the part limit. The final MOC ended with a three function knuckleboom crane and a simple bed. In addition to the steering and the working doors, the crane is fully functional. The rotation is handled by a wheel on the right of the truck, and the main lift is handled by a wheel in the rear of the truck. The second stage lift and boom extension is handled by a small wheel at the top of the crane.

The JCB 150T was a simple and straightforward build. Recreating a MOC with a single arm lift created some additional challenges. A single mini linear actuator was used to lift the boom, and a worm gear system was used to adjust the tilt of the forks. The offset cabin caused some frustration, but I eventually figured it out.

Finally, the Brouwer SH 1576 was the purpose of this project. After a little research, I determined the scale of the project. I then started building. I usually add too many features to a MOC, and this harvester was no exception. The rear wheels spun a single differential, which ran straight to the front to power a two cylinder motor. Off the driveline was a PTO between the motor and the differential which would run the harvesting arm. The harvesting arm has a track system to drive the pieces of sod up to the back of the harvester to load the sod on the pallets. A simple cutting head was added to the front which had a cutter to cut the sod off the ground, and a timed cutter on the top to make sure each piece of sod was the correct size. After some work I added a simple steering system controlled by the smoke stack. Finally, I added a forklift system to hold and drop the pallets of sod off the back, and a small standing pad for the pallet worker.

This was the first LEGO contest I have entered since 1994. I hope you enjoy my entry. Thanks to Eurobricks.com for the contest. I appreciate your vote at eurobricks.com. In addition, instructions for the models can be found here.

For those counting (me), the number of parts needed for each MOC are: MAN TGS- 557, JCB 150T- 287 (inc 58 tracks), Brouwer 1576- 484 (inc 43 tracks)