John Deere 6130R


I am into a little bit of a tractor phase lately, so here is a model of the John Deere 6130R row tractor.

fullsizeoutput_1640.jpeg

After the completion of my 9393 MOD, and the Claas Atos, I wanted to expand on what could be done in the tractor theme, and I wanted to use the newish large technic tires that first came from 42054. I set out to set the scale and list some of the features I wanted.  I decided on a John Deere tractor, because green looks sharp in LEGO, and the hubs I would need were available in yellow.

I first started with the driveline which is simply a differential between the rear tires, and a  couple of gears to the I4 engine (green of course). The steering was the second feature added, and runs from the HOG on the roof, goes through one bevel setup to the rack under the from engine.

fullsizeoutput_1649

The tractor also has a front and rear PTO, with dual on/off switches, and front and rear drawbars. These features were a little tricky to add. The PTO on the rear is connected to the driveline on the right by a changeover catch, and routes rearward over the rear axle. The PTO on the from is connected to the driveline on the left, and routes under the steering axle to the front. Both drawbars can be raised and lowered by a HOG on the roof ahead and behind the steering HOG. Both use two mLAs to raise and lower the drawbar, and both can hold enough weight to tip over the tractor.

fullsizeoutput_164d

Working on the body work took some time. After trying a couple of technic options for the front hood, and rear fenders, I settled on an option that uses mostly system bricks. I was pleased how it turned out as it does not subtract from the look of the tractor too much. The hood can open to see the engine.

The tractor worked well, and all the features functioned as they should. I will continue to design implements, and test them out as long as the tractor stays built.

Happy building.

Advertisements

Volvo Ibex


Another contest, another build. LEGO Ideas posted a contest to build your idea of the Volvo construction vehicle of the future using LEGO Technic bricks. This was my entry for the contest, which did not win, but was a design I was happy to complete.

fullsizeoutput_129b

The design was inspired by the Volvo Sfinx and the Hyundai HFex Concept as I was interested in trying the various tracks, and a foldable boom. I started with the track sections, with four idetntical modules. Each are connected to the center turntable with a worm gear assembly for individual track movement. The system is enough to hold the full MOC, but not overly strong.

fullsizeoutput_1290

Next came the superstructure. I created a conventional cab on the left, and added some fuel cells on the back. These cells can slide out the back of the superstructure to be easily replaced. Next came the boom. I wanted a three section boom that would fold, and extend in a variety of directions. Each of the three pivots is operated by a worm gear mechanism. The best manage the length of the boom, the main boom used a worm and 48z gear, the second used a worm and 24z gear, and the final boom used a worm and 8z gear. I added a ball join at the end of the boom to allow for multiple attachments.

fullsizeoutput_128e

The entry did not win the contest, but I was happy with the result. It was creative, and functioned well. I like the way it looked, and was happy with the track setup.

Happy building.

Unimog 437


If my previous builds are any indication, I am a big fan of Unimogs. So it was just a matter of time before I built another one. Rather than building one this time, I built a modular system that allows for a number of different versions.

Full instructions can be found here.

This build started with a desired to make another small build with the great Fischertechnik tires I acquired. I wanted to build something small and playful like RM8s FJ or Sheepo’s Defender. As has been happening with many of my recent builds, I wanted to give the MOC some playable options and easy modifications. A Unimog was a perfect option, and who am I to turn down a Unimog? So I gave myself the following constraints: 4×4, I4 fake engine, steering, manual and PF drive options, removable cabs, removable bed, and two chassis. I set off to work.

The axles came together fairly quickly. I decided quickly not to do portal axles, because I wanted the complexity of the MOC to be elsewhere. Both axles have a differential, two soft springs, and are stabilized longitudinally via steering links and laterally via panhard links. All for shocks are mounted on crankshaft parts to get the ride height of the Unimog just right. There is about 1.5 studs of travel for each wheel, which provides adequate articulation.

The axles are connected to a fixed axle that powers a I4 fake motor. Since I wanted the MOC to be easily switched between manual control and PF, the driveline got a little over-complicated quickly. The steering axle and drive axles cross each other twice. This allows for the steering to go to the top for a HOG, and backwards so a PF servo motor can be added. A 16t gear is available at the top of the chassis to power a PTO, or add a PF XL motor to give the Unimog propulsion. The long Chassis can fit a full a full Power Functions pack. When the power pack is not installed lots of open space is available for other additions. I added a three way tipper lift mechanism for both the long and short wheelbase chassis.

Attachment points were added for the rear bed and for the cab. I created three cabs, and each can be added to both chassis (though the Doka looks best on the LWB). Two axles with stop can be pulled to free the cab. I created three beds and a power pack. Four axles with stop are required at each corner to secure the bed. A camper and a crane bed are not far behind on my building queue.

The Unimog turned out exactly as I wanted. The suspension and steering are light and smooth under manual operation, and work great with PF. I am excited about the ability to offer and develop multiple beds and cabs. Instructions are posted, so I look forward to seeing other options people develop to make their own Unimog.

CAT 914K


These days, some projects are taking longer than they have in the past. The little Wiggs in my house and a mirad of other reponsibilities are slowing my production. This loader was started a little over a year ago, and it was finally finished last week.

The full gallery can be seen here.

fullsizeoutput_108f

I was sitting on a train in Chicago, and saw a little CAT 914k out the window, and thought, “I should finally make a loader.” I got home and started to work. My collection recently added the Fischertechnik tires and the pneumatic parts from the LEGO 42053 Volvo, so I started calculating the scale. Once the scale was set I worked on the linkage for the bucket. I spent two full nights working on the linkage to take full advantage of the longer pneumatic rams. I used the longer ones on the lift, and a shorter one on the tilt.

fullsizeoutput_108d

After the bucket mechanism was set, I worked on the chassis. The size allowed for four wheel drive. The rear axle was set in a pendular setup, which allowed for some articulation over varied terrain. The rear differential linked to a small I4 motor that was placed in the rear. The pneumatic valves were placed over the motor. The light on the roof operated the steering.

fullsizeoutput_1091

While the project took a little too much time to complete, it was a fun project that turned out well. The linkage and bucket range worked well. It also held a load well. The stability of the loader could have been a little better when pumping the pneumatic pump, as the suspension took a lot of rigidity out of the rear. The design allowed for normal LEGO 81mm tires as well.

Happy Building.

Claas Atos


Not only are my builds becoming smaller, I am also enjoying builds that offer a little more modularity. Why build one thing, when the one thing can play a number of different tasks?

When I built the Snowblower a couple of years ago, I made a couple parts of the truck removable. So after the build was complete made a couple of other options: different cabs, other beds, a crane. This kind of building continued with the 9393 updated tractor. I was hooked. So, when it came time to make a tractor, I had this feature central to the build.

The Atos started a couple of years ago when I completed the 9393 update. I wanted a front PTO in a small tractor. Lime parts were becoming more prevalent (though we are still missing a red medium wheel), so I figured I could make something work. I started with the front axle, as it would need steering, a PTO shaft, and something to lift an implement. The PTO shaft runs directly forward from the rear differential under the steering rack. Another axle runs a stud and a half to the left, which drives a worm gear to elevate the front drawbar.

The engine is mounted on top of the steering unit, and is connected to the rear differential. Off the right side of the engine is a changeover that controls the raear PTO. This drive moves to the rear, and then powers another PTO for the rear. The changeover lever is in the cabin, to the right of the steering wheel. As in the front, a worm driven drawbar is on the rear to mount an implement. A simple hitch is there for a trailer.

I build a front Lemken furrow, a rear Poettinger power harrow, and a front and rear Claas disco mower. I look forward to making other implements as well. Each attach to the front and rear by removing a 5l and 8l axle with stop. It’s simple, and allows for endless modification.

I am happy with the way the tractor turned out. It was strong enough to handle the play of my young kids, and all the functions worked well. I would have like to have an on/off switch for the front PTO. Other than that it turned out well.

Until next time, happy building.

Mercedes Benz Arocs Tipper


I am finding myself building a lot of trucks these days, so let’s add another one to the collection.

Full gallery may be found on Flickr and Brickshelf.

Basically the whole point of this project was to make a mid scale truck that was orange. It seems like the only official LEGO sets I buy these days are the orange ones, so I have to use the parts for something. I found this nice little Arocs tipper truck, and I thought, that’s a great little idea. I started with the chassis which came together quickly. The two rear axles are connected via each differential, and drive a small 2 cylinder fake engine under the cab. The front two axles steer at different ratios, with a HOG gear going to the top of the cabin. A linear actuator is used to tip the bed, with controls on each side.

The tipper bed came together quickly, though I wished some additional parts were available in Orange. No problem, but in this age of LEGO Technic color proliferation, it would be nice to complete a color pallet before starting on another one. Anyway, the cab was little more tricky. Like many modern trucks, the grill is a rather unique. The Arocs uses four rows of little scoops with a large center star. Adding something similar on my truck required some creativity, and compromise. I fit only three rows, and recreated the scoops with cheese slopes. The top row was mounted level, and the two lower rows were mounted on hinge plates connected on the side of the cab.

The final model was sufficient, but not groundbreaking. It looks good enough; you can tell what it is, but it does not win any modeling contests. The steering worked great, as did the drivetrain. The tipper bed worked well, but required a little muscle at the early stage of tipping due to the leverage. The tilting cab worked well, but in its resting state was a little too loose. Maybe someday I will edit the grill to make it better, but for now, it works.

Happy Building

Forest Fire Truck


Everyone once and a while I see a design I like so much, I copy it. So thanks to Horcik Designs on the fun little Fire Truck that I copied. Thanks for the inspiration.

The full gallery may be found on Flickr and Brickshelf.

When I found Horcik’s fun little Fire Truck, I was immediately enamored with the look of the truck. After deciding I was going to make it, I started looking for additional features to add to the excellent design. After finding some great ideas of a Renault version (2), I decided to get to work. The truck started with a 4×4 driveline and an I-4 engine. I used a simple live axle setup with 9l steering links to keep the sway movement in check, and both axles used a Panhard link. The steering was actuated with another 9l steering link, rather than the more common rack and pinion setup. This allowed for a lower engine mount, and something a little different in the design. The steering can be moved by both lights on the roof of the cab.

Which brings us to the cab. I wanted to use the face of Horcik’s truck, but wanted to add some changes. I added two doors to make the cab a little longer, and added four of the new panel parts that work great as seats. Then I made sure the cab could be tilted simply, and connected the two roof lights to the steering. You can see the engine and the steering when the cab is tilted.

Then off to the body. It turned out to be more simple than I had planned. I had some ideas for a hose reel, a roof mounted water gun, and various cabinets with tools inside. Every idea I tried was a little ugly, or boring. So, I closed up the design with a couple of water tanks inside the body of panels. It’s not fancy, but the design turned out clean, which is what attracted me to the project in the first place.

The design worked fine, though the front axle could be a little more robust. It was not a complicated build, but it was a fun one. Don’t worry, there will be complicated builds coming soon.

Happy Building.

Mini Mack Cabover


Sometimes I need to build something small to refresh my mind. This was the result of stepping away from other projects for a while, and spending a couple of hours on something small.

The full gallery may be found on Flickr.com.

Recently I wondered if I could build something like LEGO set 8065; a small truck with one function. I liked the little roll off dumpster idea, and I see plenty of the Mack version around here. I had a couple of hours, so I thought, let’s see what I can build. The single function of the truck is the roll off feature. A worm gear moves the arm up and down, and the little hook catches a bar on the dumpster.

The rest of the truck is build on liftarms and connectors. The truck is 8 studs wide, and the space between the two rear axles is 4.5 studs. These two measurements made the chassis more challenging than it should have been. I built a simple cab, and added a little bumper, and the truck was done.

The truck works well. It only does one thing, so it should. It was fun to do a quick little build, and make something small and simple. Until something more substantial…

Happy Building!

Concept John Deere Bulldozer


In what is becoming a little bit of a theme, I submitted another design for a Lego contest. In the long line of Eurobricks.com contests, the Technic Challenge 10 called for a pneumatic build. Challenge accepted!

Full Gallery Here

Concept John Deere Bulldozer Left

The contest had very few constraints other than the build had to use Pneumatics. As I have mentioned before, working with pneumatics is not my preference. I don’t like them, so it was good for me to step out of my comfort zone.

I was feeling especially creative this time, so I thought about a number of concept ideas. Pneumatics do not tend to work smoothly when lifting arms so I decided against an excavator and a loader early. Additionally, I was not willing to invest in additional parts for this project. After a couple of drafts, the idea of this bulldozer was born. Taking some inspiration from some of John Pope’s design, the basic idea was there. The dozer would have different tracks, a three movement blade, a crazy engine, and a forward thinking design.

Concept John Deere Bulldozer Blade

I started with the tracks. After moving the axle points four wheels countless times, I came up with a design I liked. I made another one, and linked them together. The I worked on the blade. The dozer would have a lift, tilt, and side to side angle adjustment. After playing around with some idea, I found a solution I liked. Two pneumatic rams were on the front to lift the blade on the top. Then two links were connected low on the two sides of the blade, and then on each side of the dozer. These points on the dozer were moved fore and aft by on pneumatic ram each. These side rams would move the blade left or right individually, or together they would tilt the blade up or down. Additionally, it allowed all the tubing to be internal.

Concept John Deere Bulldozer Open

I added a small compressor powered by a Power Functions M motor, and the battery box under the cab, and added the 16 cylinder engine (coupled V-8 and Flat 8). The cab was easy to get the shape I wanted, and gave me some space for another pneumatic ram to open the hood. I then decided to add a ripper since I had one pnuematic left. The new 1×11 ram a great addition, but a little more power could have been used for the ripper.

Concept John Deere Bulldozer Chassis

I was pleased with the look the bulldozer. The functions worked well, but on reflection, the were not exciting enough to be competitive for a contest. After two pneumatic builds in a row, I find some of the frustrations I have with them remain, but I am discovering some charms as well. We’ll see what comes next.

Happy building.

International Tow Truck


I have so many pneumatic parts, but I do not build with them often. It was time for me to use them.

DuraStar

Since this would be an intentional pneumatic MOC, I wanted to do something small and simple. I thought a tow truck would work well. As many of my trucks are based on Europian models, I figured it was time to do an American truck. The International DuraStar truck seemed to be a good solution, and they are rather ubiquitous her in the States. It is not too big, and not a pick-up based truck, so it was perfect for me.

I first started with the tow boom. I used the new 1×11 cylinder for the boom extension. I used two of the old 2×9 cylinders for the boom lift. I worked hard to get the boom rigid enough for the extension while remaining small. Still the boom is about twice the width and height of the required scale. It is a little flimsy with a heavy load.

DuraStar Hook

The chassis was more work than it should have been. Working in all the pneumatic parts is simple enough, but giving space for all the tubing and flexibility required much work. Add to the fact that the  chassis needed to be strong enough for a Pneumatic pump, and I thought it would be good to have a working driveline, and it got messy fast. Editorial comment: I like clean designs. It’s hard to have clean designs with pneumatics.

DuraStar Chassis

The rear wheels connect to a 2 cylinder fake motor in the front. I did not use a differential. It fits, but I could not find a solution to keep the wheel axles connected to the differential while retaining the rear dualies. All of a sudden the choice of not having a differential in 42022 makes a little more sense. I added a little car lift on the back. The elevation is controlled by worm gear, and the extension simply uses two friction connectors. In front of the dualies is a pneumatic air tank on the right, and the two control valves on the left. Hoses fill up the rest of the space. Above the air tank is worm gear transmission for the winch.

DuraStar Right

I spent a lot of time working on the hood. The cab came together smoothly, but the hood took some work. Working with something that was rigid enough for my standards took some time. I tried some designs with panel, and some designs with plates and wedge plates. Eventually, I settled on a simple studs-on-top brick and plate construction. The mixture of Technic and system looks a little disjointed, but it represented the shape well.

The truck worked well enough. The steering and fake motor worked smoothly and consistently. The pneumatics worked smoothly, and were able to move the functions of the truck well. The car lift on the back cannot handle too much weight.

Two final editorial comments. I am firmly in the linear actuators camp, as I have said before. Fitting rams, running tubing, and trying to use those little valves just to get position of the pneumatics perfect drives me crazy. Second, I really like the 49.5×20 wheel and tire set. It is a great size and has perfect look. But when I build trucks with them I get frustrated. They look better as dualies on the rear, but there is no good connection to a differential on a 15 or 17 wide setup. Eventually I will find a solution, but at this time, they are driving me crazy, so stay tuned.

Happy Building.