Kenworth T47


The Kenworth T55 is my favorite Trial Truck I have built. It’s not the best looking, or the most capable, or the most reliable, or even the most popular but it’s the one I keep coming back to. My latest truck is a continuation of the Kenworth series of trial trucks. The T55 would pull a stump, the T47 is quicker, has better steering, and more compliant suspension.

T47

Right from the beginning I knew the truck would have a similar cabin at the T55. It would continue with the four wheel steering, and I added an independent suspension. The dimensions would stay close to the same. From there anything else was fair game. I started with the axles. The new suspensions arms made it a little bit easier to make a good independent design. A CV joint was used at the steering knuckle, which allowed for the steering pivot to be near the wheel. Each wheel had about three studs of travel.

The XL motor was placed on the left of the center line and the rechargeable battery box was placed on the right. A newly acquired Servo Motor was placed rear on the centerline directly in front of the rear axle. I had a little more space left, so I added a simple two speed gearbox. A little more space remained so I added a flat six engine.

T47 Engine

Part of my attraction of the T55 has been it’s coloring, and it’s shape. I wanted to keep the attraction similar, but in a way that would differentiate the trucks. I have been acquiring some green lately, so I thought would be a great color. The cab is basically the same, but now it can tilt so you can work on the engine.

The off road performance was not great on the T55, and the T47 was similar. The independent suspension had too much play at the wheels to be great at steering, and the articulation was not very supple. The truck was great to drive around my house, but when I took it outside it did poorly. The suspension design is better than my last independent set up. There was no slipping of the gears. I think my next design will use the same knuckle, but design a different steering connection. This truck again proves the use of knob wheels rather than a differential for a trial truck. Feel free to make your own, and let me know what improvements you developed.

Happy Building.

Octan F1


In a bought of inspiration (or distraction) at work, I noted my old 6546 sitting on my desk. After years of looking at this small car I thought, I could make this bigger, and in Technic. Done.

The full gallery including instructions can be found here.

Octan F1 Front

I decided the car should have a simple engine, four wheel suspension, and working steering. Recently, there was a good design that gave me a good idea about how to do a smaller scale driveline for the car. I worked on the rear first, and once I had the suspension setup, I added a small flat four engine place directly on the bottom of the car. This would be the basis for the rear of the chassis.

I then started on the front suspension design which would utilize the new suspension components from 42021. I first tried adding shock absorbers. Then I added rubber connectors. The first was too big, the second did not work to well. After monkeying with it for a while, I developed a simple torsion bar setup. The torsion axle is an 10l and provides the pivot point to the bottom control arms. They connect to the chassis behind the suspension to a fixed point under the steering wheel. The set up works well. Frankly, it works a little better than the rear as the rear could benefit from stiffer arms and suspension mount.

Next came the body work. As I wanted to keep things similar to the 6546, the coloring would have to be white, green, and red. And it would need some stickers. I used the stickers from set 60025, so the car number would have to be changed from the original #4 to #5. The coloring and markings turned out well. I tried to make sure it was not too busy. Easy enough, and everything is easily acquired so you may build your own.

Fitting with my yearly planning I have now completed the two small builds I wanted to complete. It was quick, fun, and a MOC that is accessible for other builders. Feel free to build your own (make some new colors, and we can then have a race).

Happy Building.

JCB 531


Astute readers will note the heading of Thirdwigg.com has changed to read “LEGO Technic from Grand Rapids.” A slight heading change notes a rather large life change for myself, Mrs. Thirdwigg, and Jr. Thirdwigg. This has caused a slight hiccup to production and the timeline of The Queue, but we are back in business.

A working telehandler has been on my list of machines to build for a long time. I finally acquired a 32l axle, and it was the impetus I needed to start the project.

The full gallery is here.

Ready to take on any project.

Ready to take on any project.

Right from the beginning I decided the MOC would have steering, boom lift, boom tilt, and boom extension. All the functions would be manual as is my current trent (do not fear, it will be over soon), and would be housed within the boom itself. I based the scale for the MOC on the length of the boom being 32 studs so I could use the full 32l axle.

The 32l axle was placed on the top of the boom, and would allow the sliding 8z gear to transmit rotation to the fork tilt throughout the full extension of the boom. At the end of the boom I added a mLA to adjust the tilt of the fork. It took a little working, but I eventually figured out how to adjust the tilt for every position in the lift. I then worked on the boom and the extension so it would be as stiff as possible through all points of the lift.

I then worked on the chassis and the cab. The chassis was rather basic, and after a couple of rebuilds to get the steering right, it was done. I did have to do some revisions to have the boom/chassis interface more rigid. It turns out that when the boom was fully extended, the lift would sway a little too much. I then added a cab and the engine box on the right side. Here you can see the final project working.

The MOC worked well, and other than a slight sagging of the boom at full extension, I would not change a thing.

Happy Building.

Silly Fat Penguin


Sometime procrastination breeds a good outcome. Sometimes. This is the result of waiting too long to come up with an idea for a contest.

The full gallery with Instructions can be found here.

Penguin

A while ago Eurobricks posted a contest. While I was focusing on Brickworld, a new job, and other life events, I decided I should sit this one out. Then things died down. On July 20. It was a little late to produce something excellent. I thought it would be fun to do something other than a truck, plane, or tractor. I saw a little toy penguin on a colleague’s desk, and I thought,that’s it. That would be fun.

The penguin has a wheel on the bottom which runs three gears. The final gear drives a shaft that connects to the wings and the beak, making them move as the penguin wobbled along. Behind the main wheel, there is a little swivel wheel so the penguin can be nimble.  I added some feet, and worked a little while on the belly. I added some fun eyes, and made sure to give the penguin a cute little bow tie. All done. All for 192 parts.

I wish I would have added a wind up motor, or gave the penguin the ability to walk by itself, but I ran out of parts and time. After filming (which is not my best work), I realized the flapping could have been a little quicker. But it was a fun little project, and my first animal creation, so that’s something. I hope you enjoy, and if you can vote, give one for me.

Happy building.

Hawker Typhoon MkIb


Two years ago I built the Spitfire MkIIa. It remains one of my more popular builds, and one of which I am still quite proud. It was not my first large plane, though when I completed it, I said it would be my last.

As my father would say, “never say never.”

Typhoon

The full gallery may be seen here.

I learned a lot of great things from the Spitfire. Large scale building is exciting, and challenging in that you have to think about significant structural considerations, placement, and shaping before and while your build.

With this in mind, I wanted to develop what I have learned, but allow myself the ability to take a large scale aircraft to the next level. I wanted to improve the function of the control surfaces, design my own propellor, use four Power Function channels, and use the boatload of Dark Green parts that I had recently acquired. I considered a number of airplanes, including doing the FW-190 again, but I finally settled on the Typhoon. Time to get building.

After some planning, I had my scale. 1/13 was an appropriate size for me to replicate the plane and its functions, while still keeping the plane from getting too large. This scale would also allow for LEGO wheels for the landing gear, and a worker able propellor spinner design. As I learned from the Spitfire, placement of large components needed to be done early, and placed in the MOC to its exact final location. As the structure of the fuselage and wings would be stressed heavily, large components could not get in the way. Once I placed the engine block, the landing gear, the power functions, and the control surfaces, I was able to start putting together the robust structures that would support the final plane. One of the major challenges of this plane was the outset landing gear on the wings. Because they were located 42 studs apart, the wings needed to be strong. But due the the space taken for the control surfaces, and the massive 24 cylinder power pack, the wings still sag a little under load.

The control surfaces were activated with strings with studs on each end. I found this to be a better system than the axle controls for the Spitfire. It kept the controls more smooth, and reduced the amount of play in the controls. The elevator and ailerons were controlled with the joystick, and the rudder was controlled by two foot pedals in the cockpit. The remaining functions were controlled via Power Functions. An XL motor powered the massive 38 stud diameter propellor, as well at the 24 cylinder Napier Sabre engine. A M motor controlled the pitch of the propellor. Another M motor powered the landing gear, and still another  adjusted the flaps. All four motor were mounted in the chin of the aircraft; I had to use that huge chin for something. The two IR receivers were mounted in under the windscreen, and the rechargeable battery was mounted behind the cockpit.

Finally, I had to make sure all the markings were accurate. Again, due the limits of dark green parts, it was not an easy task. I started with wings, and made sure to add invasion stripes, and work my way out to the tips. The roundels were a little different than the Spitfire, but were a little larger. The fuselage took a little work to make sure the panels could be easily removed, but I eventually got there. The fuselage roundel should have a yellow ring around the outside, but the strip is so small, I could not figure out a good way to do it.

The plane worked almost perfectly. The ailerons were a little sticky, but other wise everything else managed to work for an 8 hour shift at Brickworld. The plane was liked enough to be nominated for Best Air Ship. While it did not win, it was validation that the the model was a success.

Happy Building.

Business Card Holder


Thirdwigg.com will be in Schaumburg this weekend at Brickworld. I understand my readership is rather international, but I you find yourself in the area, stop by and say hello.

Image

When you say hello I’ll send you home with one of my flashy new business cards, and you can take a look at my new business card holder. It even has suspension to keep you fingers safe from the impact due to your excitement.

Image

JCB 714


My repertoire has become quite diverse over the years. I have made large cars, large planes, MODs, and many other types of builds. I enjoy those builds, and I get an immense amount of satisfaction completed them. Recently I have enjoyed making smaller, non-powered, Technic MOCs. I can generate more small build ideas, I can stay motivated better, and I enjoy the playing with final result more. So I made another small MOC, the JCB 714.

The full gallery may be found here. Instructions may be purchased for $5 USD.

Buy Now Button

JCB 714

This MOC started when I was browsing the JCB UK website. I thought the 714 would be a fun little project that would have some nice features, and would utilize some of my collection that is not currently being used. I started working on the frame. The MOC would have a four wheel drive system, suspension, steering, and a dumping back. I designed two suspension/steering designs, and while the first one was awesome, it was not as stable as I would have preferred. So I reverted back to the design utilized on the real JCB. It was not as flashy, but it worked well. A turntable is planted behind the steering pivot, with the drive axle moving through the center of both. A liftarm was placed on the left to operate the steering function. The drive axle would connect to both axles through a 12/20 gear reduction which connected them to two differentials. The I3 motor was placed in front of the forward axle.

The rear was more challenging than I expected. First, I had to plant the mLA’s in such a way that they could be connected by a single axle that would not impede the driveline. Second, the mLA’s had to operate in such a way that the bucket could do the full range of motion; nearly 90 degrees. Third, the shape of the bucket did not work well in LEGO, as there were limited flat surfaces. Thankfully the sides were flat, and some of the bottom. The bottom was connect to the dump pivot, and the sides would hold the angled panels. Finally, it had to make sure the rear wheels could still move freely. While there are still some holes in the dump, it works well enough to transport a bunch of bricks.

The cab built up fairly quickly, and allowed me some space to add the rear window grate, and a exhaust pipe. The hood can open, and there are steps to get into the cabin. Safe egress is important.

As I am finding with MOCs that do not utilize Power Functions, the MOC functioned well, every time. No maintenance is needed, gears do not skip, and the MOC works as it is designed. This is part of the reason I am building these kind of MOCs more often. The MOC worked as it was designed, just like a MOC should.

Thanks for reading and happy building.

 

 

Iveco XTR


After a couple of more complex projects it is nice to take a break to do two simpler projects. When I need a little bit of a design rest, I do a trial truck, and usually a fictional one, so I can build as I please.

The full gallery can be found here, and free instructions can be found here.

Iveco XTR

After building a number of trial trucks, I have found some features I like to have on my trucks. Note, these features may be prioritized differently if I was participating in a Truck Trial race. These features I like are linked suspension, PF XL motor for drive, tall clearance, and a center mounted battery box. As I was making this truck for my own pleasure, I forced myself to include all of these features.

I usually start a truck with the axles, and the Iveco was no different. I created the axle with a portal axle build around my favorite piece for both the front and the rear. I also added the space to fit both a differential, or knob wheels for the final drive (though the pictures only show the latter). This would allow me to switch the traction of the truck, and allow for a minor gearing change. While the changeover takes a little bit of time, it’s a nice feature and the gives the truck some versatility. I placed the steering motor directly on the front axle with allowed the middle of the truck to be simplified vastly. In the center of the truck is the battery box mounted longitudinally, and a Power Functions XL motor in the rear. This keeps the heaviest components of the truck in the center and low.

The linked suspension is a setup developed by other that connect two pendualar axles together. Each left side has a linkage that connects the two left wheels together, and the right wheels have the same. This keeps the wheels planted as the pressure from the terrain is balanced across all four wheels. When one wheel has to go up to follow the terrain, the rest of the wheels adjust. It is simple, effective, and keeps the truck a little more planted than a suspension utilizing shock absorbers. Otherwise the truck bounces a little during an obstical.

As you can see in the video, the battery box is getting a little tired, and the snow as a little mushy, but the setup worked well. The truck stayed planted, and it was nice to have two final axle options. It is a simple design that does not require too many hard to find parts, so if you need a good little afternoon project, give the Iveco XTR a build, and tell me what you think.

OK, off to some more complicated builds. Check The Queue. There is some fun stuff coming. Until then, happy building.

8081 RT


I have said it before; I really like set 8081. It has so many possibilities for improvement. After talking a look at RM8‘s design, I thought I should do a street version of the 8081 to follow up on the 4×4 8081 I built a while back.

The full gallery can be found here, and free instructions can be found here.

8081 RT Front

I took the existing bodywork and frame of the 8081, and chopped out the rear suspension unit to revise the rear suspension design. I wanted an independent setup with a differential. As I have used a couple of times before, I used a floating differential design. The differential is attached to the driveline much like a live-axle set up, but is connected to two independently mounted wheel hubs. I have used this before, and I like the way it works. It allows for a driven axle with independent suspension in a very narrow setup. This way each wheel can move independently, but it does not require two universal joints on each side of the differential. Since the differential is not fixed to the chassis, it has to be braced to the driveshaft. While this set-up is not often used in real cars, it works well for LEGO designs. I used the new wheel hubs, and attached them via a short upper arm, and a long lower arm so the camber would change through the suspension travel.

Moving to the front, I kept the V-8 as in my 4×4 8081, and built the rest of the front around the motor. I used a suspension design similar to 8081, where there are two equal length arms holding the steering pivot. A single shock absorber is used for each side. All told, the car is about two studs lower, due to the new suspension, and the new tires.

It is not much of a redesign, but sometimes I need a project that is not a significant, and allows me to just build something simple.

Happy Building.

2013


2013 was another good year for my LEGO portfolio, though not quite as prolific as 2012. I created 7 MOCs over the course of the year, which I guess is respectable considering the size and complicity of some of my MOCs. As a recap, this year I completed the Spitfire, the Talon Track, the CargoMaster Crane, the Cat 573c Feller, the Bedford MWD, the Sod Farm, and the MAN TGS. I also spent some time creating instructions for my popular T-72 and the Kenworth T55.

Some thoughts as I look forward to 2014.

First, instructions seem to be very popular. Various people ask for instructions often, and I suspect this is consistent with other builders. While many of my MOCs have instructions freely available, I have decided to start charging $5 USD for some, particularly the more complex and unique MOCs. The reality is that creating instructions is a lot of work. I hope to keep offering a mix of both.

Second, I have been enjoying building more MOCs that do not include Power Functions. While creating another Trial Truck is always exciting, creating something smaller with lots of features has been very exciting. Still some of the works I enjoyed the most both in building and in playing are my 4×4 8081, the Sod Harvester, the Mini Feller, and the MAN TGS. Also, these builds are more accessible to other builders who may have a smaller collections. The simplicity allows them to build one of their own. Good design should not require a large collection.

Third, I really do enjoy the big modeling projects. The Spitfire is my proudest accomplishment, but yet there are many parts of the airplane that can be improved. While the Spitfire was much better than my FW-190, I can do even better on the next one. As I write this I am in the planning stages for something large and functional to follow in the steps of overly-large brick based Technic airplanes.

For 2014, let me publish some goals.

Attend Brickworld 2014, and bring the following:

Create a Studless Supercar with a short-throw 6 speed shifter.

Model another large plane. I have to use those dark green parts for something.

Make another working helicopter.

Design another small forklift.

Build another Trial Truck with independent suspension; 6×6 or 8×8.

Two small projects. These usually develop organically, so planning for them is a little hard. But each will be not more than 500 parts.

Also, 2014 will be my ten year anniversary of returning to LEGO from my Dark Ages. I hope to return to the set that brought me back, with a modified version of 8386.

Until these are completed, happy building, and thanks for visiting.

Follow

Get every new post delivered to your Inbox.

Join 29 other followers